VectorizedStatistics
Documentation for VectorizedStatistics.
VectorizedStatistics.vcor
VectorizedStatistics.vcor
VectorizedStatistics.vcov
VectorizedStatistics.vcov
VectorizedStatistics.vextrema
VectorizedStatistics.vmaximum
VectorizedStatistics.vmean
VectorizedStatistics.vminimum
VectorizedStatistics.vstd
VectorizedStatistics.vsum
VectorizedStatistics.vvar
VectorizedStatistics.vcor
— Methodvcor(X::AbstractMatrix; dims::Int=1)
Compute the (Pearson's product-moment) correlation matrix of the matrix X
, along dimension dims
. As Statistics.cor
, but vectorized.
VectorizedStatistics.vcor
— Methodvcor(x::AbstractVector, y::AbstractVector)
Compute the (Pearson's product-moment) correlation between the vectors x
and y
. As Statistics.cor
, but vectorized.
Equivalent to cov(x,y) / (std(x) * std(y))
.
VectorizedStatistics.vcov
— Methodvcov(X::AbstractMatrix; dims::Int=1, corrected::Bool=true)
Compute the covariance matrix of the matrix X
, along dimension dims
. As Statistics.cov
, but vectorized.
If corrected
is true
as is the default, Bessel's correction will be applied, such that the sum is scaled by n-1
rather than n
, where n = length(x)
.
VectorizedStatistics.vcov
— Methodvcov(x::AbstractVector, y::AbstractVector; corrected::Bool=true)
Compute the covariance between the vectors x
and y
. As Statistics.cov
, but vectorized.
If corrected
is true
as is the default, Bessel's correction will be applied, such that the sum is scaled by n-1
rather than n
, where n = length(x)
.
VectorizedStatistics.vextrema
— Methodvextrema(A; dims)
Find the maximum and minimum of A
, optionally along the dimensions specified by dims
. As Base.extrema
, but vectorized.
Examples
julia> A = reshape(Vector(1:2:16), (2,2,2)) 2×2×2 Array{Int64, 3}: [:, :, 1] = 1 5 3 7
[:, :, 2] = 9 13 11 15
julia> extrema(A, dims = (1,2)) 1×1×2 Array{Tuple{Int64, Int64}, 3}: [:, :, 1] = (1, 7)
[:, :, 2] = (9, 15)
VectorizedStatistics.vmaximum
— Methodvmaximum(A; dims)
Find the greatest value contained in A
, optionally over dimensions specified by dims
. As Base.maximum
, but vectorized.
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vmaximum(A, dims=1)
1×2 Matrix{Int64}:
3 4
julia> vmaximum(A, dims=2)
2×1 Matrix{Int64}:
2
4
VectorizedStatistics.vmean
— Methodvmean(A; dims)
Compute the mean of all elements in A
, optionally over dimensions specified by dims
. As Statistics.mean
, but vectorized.
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vmean(A, dims=1)
1×2 Matrix{Float64}:
2.0 3.0
julia> vmean(A, dims=2)
2×1 Matrix{Float64}:
1.5
3.5
VectorizedStatistics.vminimum
— Methodvminimum(A; dims)
Find the least value contained in A
, optionally over dimensions specified by dims
. As Base.minimum
, but vectorized
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vminimum(A, dims=1)
1×2 Matrix{Int64}:
1 2
julia> vminimum(A, dims=2)
2×1 Matrix{Int64}:
1
3
VectorizedStatistics.vstd
— Methodvstd(A; dims=:, mean=nothing, corrected=true)
Compute the variance of all elements in A
, optionally over dimensions specified by dims
. As Statistics.var
, but vectorized.
A precomputed mean
may optionally be provided, which results in a somewhat faster calculation. If corrected
is true
, then Bessel's correction is applied, such that the sum is divided by n-1
rather than n
.
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vstd(A, dims=1)
1×2 Matrix{Float64}:
1.41421 1.41421
julia> vstd(A, dims=2)
2×1 Matrix{Float64}:
0.7071067811865476
0.7071067811865476
VectorizedStatistics.vsum
— Methodvsum(A; dims)
Summate the values contained in A
, optionally over dimensions specified by dims
. As Base.sum
, but vectorized.
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vsum(A, dims=1)
1×2 Matrix{Int64}:
4 6
julia> vsum(A, dims=2)
2×1 Matrix{Int64}:
3
7
VectorizedStatistics.vvar
— Methodvvar(A; dims=:, mean=nothing, corrected=true)
Compute the variance of all elements in A
, optionally over dimensions specified by dims
. As Statistics.var
, but vectorized.
A precomputed mean
may optionally be provided, which results in a somewhat faster calculation. If corrected
is true
, then Bessel's correction is applied, such that the sum is divided by n-1
rather than n
.
Examples
julia> using VectorizedStatistics
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> vvar(A, dims=1)
1×2 Matrix{Float64}:
2.0 2.0
julia> vvar(A, dims=2)
2×1 Matrix{Float64}:
0.5
0.5